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Estimation of integrals with respect to a density of states 

C M M N e x  
Department of Physics, Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, 
UK 

Received 21 October 1977 

Abstract. A method is presented for estimating definite and indefinite integrals over a 
density function, such as a local density of states, defined by a three-term recurrence 
relation. This may be generated, for example, by the ‘recursion method’ applied to some 
Hamiltonian, and properties of the approximation are given, and the results derived, in 
that context. 

1. Introduction 

In this paper we describe a method for estimating integrals over the density function 
(‘density of states’) obtained from an operator using the recursion method (Haydock er 
a1 1972). The results are essentially those known already for the classical moment 
problem (see Akhiezer 1965), but reformulated so as to be applicable directly to the 
tridiagonalisation of an operator, and extended to include non-positive functions. We 
derive expressions involving only the recursion coefficients, and obtain these directly. 
rather than using the theory of moments and its consequent numerical problems. We 
present the results for the general (two-sided) method and indicate the simplifications 
that occur when the operator is Hermitian and the density of states is positive. 

We first briefly describe the recursion method and show the relationship of the 
coefficients in the tridiagonalisation to the local density of states. We then indicate 
how the definite and indefinite integrals over this function may be estimated, indicat- 
ing the relationship of these results to those known for the corresponding moment 
problem (for the equivalence of these see e.g. Akhiezer 1965). We finally comment 
on the use of this method and give a simple example as an illustration. 

2. The recursion method 

The general recursion method associated with the real eigenproblem 

H’Pi = Ei’Pi ( l a )  

HfQi = EiQj (16) 
may be stated as follows. 

Given ‘starting’ vectors io and do define 

$n+l = b n + l 4 m + l  1 /2 = ( H - a ,  j&-bnbi1’2&-1 
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1 / 2  - 1  - where initially $o= = 0 (b1'2 is taken to mean 
/b11'2 here and throughout the paper). The coefficients in the recurrence are computed 
from 

c $ ~  = bo bo 40; 4.-l = 

an = (4,,, H4,) ( 3 Q )  

bfl = ti,, Jfl)  ( 3 b )  

where ( - ,  e )  denotes the usual inner product. 
This is the recursion method as defined in Haydock (1977)  and in the closely 

related Lanczos method (see e.g. Wilkinson 1965), particularly as formulated in Paige 
(1972) for the symmetric case H = Ht. In the latter case if io = J o  then +,, = 4, and 
b, > 0 for all n. A consequence of this construction is the bi-orthogonality of the 
vectors (4") and { 4 m } :  

( 4 n y  4 m )  = &m- ( 4 a )  

3. The local density of states 

A subset of the eigenvectors of H and the vectors generated in the recursion method 
form alternative bases for the subspace generated by H and the starting vectors. We 
assume also that the eigenvectors of H satisfy the orthogonality condition: 

tan, q m )  = &m. ( 4 b )  

We may thus make the expansions 

4 0  = 1 f f i q i  

i o  = c w, 
1 

i 

and define the local density function as 

n ( E ) =  1 .@ia(E -Ei) 
i 

where the {Ei}  are the eigenvalues of the operator H. 

function 
If we truncate H in a suitable way to an N X N matrix, we may define a density 

N 

i = l  
n N ( E ) =  1 C Y ~ O ~ ~ ( E - E ~ )  

in a corresponding way. Then, in the sense of integrals over the density function, we 
may say 

If H is a symmetric Hamiltonian and io = 40 then n ( E )  is the local density of states of 
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interest in many applications of the recursion method (Haydock et a1 1972): 

n ( E ) = x  a?S(E-Ei)  
i 

and integrals with respect to n(E) ,  both definite and indefinite are required. 

4. Definite integrals over the density function 

In this section we derive a method of estimating the integral 
m 

J - _ f ( E ) n ( E )  d E  

for suitable functions f ( E ) ,  from the tridiagonalisation coefficients obtained in the 
recursion method. We do this by obtaining expressions for a i  p i  in the definition of 
the density function. 

As the recursion method constructs a set of vectors spanning the subspace 
generated by the starting vectors and H, we may expand the eigenvectors of H in that 
subspace in terms of the tridiagonal basis and write it  in the form: 

N N  

* i  = u(Ei)C P m ( E i ) + m  ( 7 a )  
m 

By substituting these expressions into equations (1) and using the definition of the 
recursion ( 2 ) ,  it is straightforward to show, using the bi-orthogonality of { $ m }  and {d,,}, 
that 

with 40 = b i l / ’ ,  PO = b;/’bi’ ,  and p-1= 0 = 4-1. From the normalisation of the eigen- 
functions ( 4 b )  it may be seen that 

(Ei >w (Ei) = (C / p/(Eik[(Ei))-’. (9 1 

By taking inner products of the expansions (5) with the appropriate eigenvector and 
substituting in equation ( 7 )  we obtain 

a k  = W (Ek) 

P k  = U (Ek ). 

Hence we obtain the desire,d result: 

n N ( E ) = C  aYpYS(E-EY) 
i 

where 
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The {E:} are the eigenvalues of H truncated by terminating the tridiagonalisation at 
N 'levels', or in other words, the eigenvalues of the tridagonal matrix T, where 

1 
. .  L 

If the b, > 0 (H' = H )  the matrix 

a0 b:12 
[biI2 ; ; I2  b;I2 az b:/2 * ]  

also has eigenvalues EN and is more appropriate computationally. The EN may be 
readily found using the QR algorithm (Wilkinson 1965) or? in the symmetric case, by 
use of the Sturm sequence property of such matrices. This now provides us with a 
method of estimating integrals: 

N 1 f ( E ) n  ( E )  d E  = 1 f ( E ) n N  ( E )  d E  = 1 f(EN)wN (12a)  
i = l  

where 

In the symmetric case this is the well known (see e.g. Akhiezer 1965) result of 
Gaussian quadrature, with 

w N =  (f l = O  p:(EN))-l 

5. Properties of the integral approximation 

Here we derive directly properties corresponding to the usual results for Gaussian 
quadrature, but which do not depend on a positive weight function. 

Evidently the p , (E)  and 4n(E) are polynomials in E of degree n, and from the 
bi-orthogonality (4a) of the tridiagonal basis it may be seen that the polynomials 
satisfy the orthogonality relationship 

N 

1 a?'PNpm(EN)qn(EN)= Smn 
i = l  

for ?' with m, n < N, and thus in the limit N + 

A consequence of this (see appendix 1 for the method of proof) is that the approxi- 
mate quadrature (12)  is exact when the integrand f ( E )  is a polynomial of degree less 
than or equal to 2N - 1. 
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The correspondence to orthogonal families of polynomials is general and we may 
write (see e.g. Cheney 1966): 

a" = J- Epn@)qn(E)n(E)dE, (12c) 

b? = I Epn(E)qn-l(E)n(E) dE. ( 1 2 4  

6. Practical computation of the integration formula 

The expression (126) for the weights in the integration formula is rather sensitive to 
the precision of the roots {EN} of ~N(E) (equivalent to the eigenvalues of the 
tridiagonal matrix); we therefore give an alternative expression for them. This is given 
in Cheney (1966) for Gaussian quadrature corresponding to our symmetric case, but it 
is possible to derive it directly in the context of the general recursion method (see 
appendix 2). We find 

where rN(E) is a polynomial of degree N satisfying the recurrence relation 

bk+ib i??rk (E) = (E - ak)lk-i(E) - b :/'lk-2(E) (14) 

with the initial conditions ro = (6061)"'6;', r-1= 0. 

7. Indefinite integrals of the local density of states 

In the following sections we restrict our attention to positive density functions and the 
symmetric recursion method. Thus all eigenvalues {EN} are real and bi > O  for all i 
and N. We will generalise the method of the preceding sections in a way which 
corresponds to the solution of the classical moment problem (Akhiezer 1965), but 
which does not involve a direct knowledge of the moments. 

To estimate the indefinite integral 

we force a quadrature node to be at E =E* (in other words postulate an eigenvalue of 
N is E*)  and examine the consequence. 

We assume that the recursion method has been applied to H, and we know bo and 
{ai, bi; i = 0, . . . , N - 1). If we now define 

and use superscript * to denote the modified functions, we obtain b z : ~ p $ + ~  ( E )  by 
recurrence such that pRcl (E*)= 0, and we may proceed with the quadrature as 
before. We obtain an estimate of the indefinite integral by taking as integrand f*(E) 
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the function 
E < E *  

E = E *  

E > E * .  

Then, writing ET = E * ,  the indefinite integral is estimated as 

It may be seen (see appendix 3) that the definite quadrature obtained by using (16) 
over the whole range is exact for f ( E )  a polynomial of degree less than or equal to 2N. 
This demonstrates that the restriction of one eigenvalue of H to a specific value does 
not adversely affect the estimation of the moments of the calculated density function 
and, together with the positivity of (yipi, leads to the well known moment problem 
result (Akhiezer 1965) giving the bounds: 

This may be seen by constructing two polynomials p+(E) and p-(E) of degree 2 N  
(which are integrated exactly) which bound the unit step function H ( E *  - E )  above 
and below. These have the defining conditions 

p*(ET)= 1, i < L ;  p*(ET) = 0, i > L ;  p"(ET)=O, i # L  

p"(E*) = 1 ; p-(E*) = 0. 

8. The density of states 

While for quantitative work it i s  almost always appropriate to use the integration 
formulae (13) or (16), it is sometimes useful for comparisons to be able to estimate the 
density of states itself. The approximation we have made to the integrated density 
function is differentiable, although the density of states is not necessarily so and we do 
not demand that it is for the quadrature formula. Nevertheless we obtain a useful 
indication of the density of states by differentiating our approximation to obtain 

It should be noted that the approximation does not satisfy some usual properties of 
analytic functions, as it is strictly a pointwise approximation to the integrated density 
of states. Thus if 

E E 

€ ( E ) = /  en(e)de and N(E)= J n(e)de 

and E' and fi are our approximations to those functions (via equations (13) and (16)) 
we have 

dd(E) 
# En'(E). - En (E), but - -- 

dE dE 
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It should be emphasised that the quantitative work is best done with the integration 
formulae which do possess useful convergence properties. 

9. Application of the method 

To illustrate the use of the method, we apply it here to the density function n(E)= 
(1 -E2)1’2 for -1 s E s 1 for which the recursion coefficients are 

ai =o,  6. I 2 ,  i it 0 and bo = 7r/2. 

Figure 1. The integrated density of states: full curve, the analytic function Ifl (1- 
e r f n  de; broken curve, the computed bounds for N =4; dotted curve, the approximate 
function for N = 4. 

-1 0 +1 

Figure 2. The density of states: full curve, the analytic function (1 -E2)”2;  broken curve, 
approximations with N = 4; dotted curve, N = 10. 
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The graph of figure 1 shows the bounds (17) and the approximation (15) to the 
integrated density of states for N = 5 and those of figure 2 provide a comparison of 
n(E) and 6 (E)  (from equation (18)) for various N. It will be noticed that the error in 
the integrated density of states is considerably less than the width of the bounds might 
suggest, and in practice this is generally true, as the bounds are rigorous mathematical 
extrema. As the number of levels increases, both approximations tend to the respec- 
tive analytic functions, as may be seen by considering the width of the bounds (17) for 
the integrated density of states. 

10. Conclusions 

We have here given a direct formulation of a method of obtaining the integrated 
density of states, and related functions of interest, from the recursion method of 
Haydock et a1 (1972). It is readily computable and provides a useful tool in the 
application of their ideas, and has already been used in several such applications 
(Gallagher and Haydock 1977, Meek 1976, Terakura 1978). 
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Appendix 1. The definite quadrature 

In this section we present a method of proof that the quadrature (12) is exact for 
polynomials of degree less than or equal to 2 N  - 1. We first show the exactness for 
polynomials of degree less than N and then extend this to the desired result, after 
initially making some remarks on the orthogonality of the polynomials {4n (E)} and 
(Pn(E)l* 

Evidently 

Substituting these identities into the orthogonality relation (4a)  of the tridiagonal 
basis and using the expansion (5) of 40 and 40 in terms of the eigenfunctions {qi} and 
{aj} leads to the polynomial orthogonality: 

for m, n < N ;  and in the limit N+oo 

('4.3) 
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Any polynomial fn(E) ,  of degree n < N, may be written as a linear combination of the 
(pi@)}: 

and from the orthogonalities (A.2) and (A.3) 
N 

i = l  

N N  
90 I fn (E)n(E)  d E  = Y O  = C ai Pi fn(EN) 

which proves the exactness of the quadrature (12) for polynomials of degree less than 
N. 

To extend this result to polynomials fn  of degree n C 2 N  - 1, it is only necessary to 
note that we may write 

fn ( E )  = PN (E)+  r (E)  

where r and s are polynomials of degree at most N - 1. Then, from the orthogonality 
of pN to all polynomials of degree less than N, it follows that 

I f n  (E)n ( E )  d E  = r(e)n ( E )  d E  5 
and, as p N  (EN) = 0, that: 

N N 1 a?P?fn(EN)= 1 ai N N  P i  r(EN). 
i = l  i = l  

As r is a polynomial of degree less than N, the integral and sum give the same value, 
and the desired result is obtained. 

Appendix 2. Computation of the weights 

The formula (13) for the weights, using the recurrence (14), results from a generalisa- 
tion of the Christoffel-Darboux formula, and also from an integral identity for the 
polynomials {rn(E)}. We first state these two results and then apply them in deriving 
the expression (13). 

A.2.1. The generalised Christoffel-Darboux identity 

This identity may be proved by induction, using the recurrence relation (8) to substi- 
tute into the right-hand side of (A.4). The special case x = y leads to the corollary 

n 1 
i = O  C pi(x)qi (x)=~(bn+lPh+l(xhn(x) -Ib  n + l  I P n  ' ( x h n + l ( x ) )  (A.5) 

where p h ( x )  is the derivative of p , ( x )  with respect to x .  
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A.2.2. An integral identity 

If we define 

where (Pt} are the polynomials defined earlier (8a) ,  then obviously 

r - 1 =  0 and 10 = (bob1)”*/bl 

and if we substitute the recurrence ( 8 a )  for p k + l  we obtain the recurrence (14) for 
rk ( x  ). 

A.2.3. The expression for the weights 

The identity (AS) may be substituted into the expression (12b)  for the weights and, 
noting that p ~ ( E r )  = 0 = qN(Ey),  we obtain 

We now use the integral identity (A.6) to show that 

b z 2  N 
N = r ~ - i ( E i  1. 

bNqN-i(Ei 

From (A.6) we see that 

~N-I(EN) = z n ( t )  P N  ( t )  dt 

and, putting y = E ?  and x = t in (A.4), we obtain 

bNqN-i(@) P N ( t )  N - l  

b 2’ t - E y -  i=o -- C Pj(t)qi(EN). 

Using this to substitute into (A.9) for p N ( t )  gives 

N bz’ ?I-1 

rN-l(Ei )= - (EN)  C q j ( E Y ) j  
bNqN-1 j = O  

This, by the orthogonality of (P,,,}, reduces to (AA), which in turn may be substituted 
into (A.7) to give the result: 

rN-  I (EN) W f J  = 
I P A T )  . 

Appendix 3. The indefinite quadrature 

The exactness of the quadrature (16), taking the integral over the whole range: 
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may be deduced in a similar manner to that of appendix 1 for the definite quadrature. 
We first prove the result for polynomials of degree equal to or less than N, and then 
extend it to those of degree less than or equal to 2N. Taking the expression for p c + l  

bN+i 
~ p g - 1  ( E )  = ( E  - a $)PN ( E )  - b $ 2 p ~ - ~ ( E > ,  

we observe that P $ + ~  is orthogonal to q k  for k C N -- 1. The case of k = N - 1 follows 
from the knowledge of bN. As in 0 5 the polynomials also satisfy the summation 
orthogonality and consequently (as in appendix l) ,  the quadrature (A.lO) is exact for 
f(E) a polynomial of degree less than or equal to N. Again if f is now a polynomial of 
degree less than or equal to 2N we may write 

f ( E ) = g $ + l  (E)s (E)+r (E) ,  

where s is a polynomial of degree less than or equal to N - 1 and r of degree less than 
or equal to N. From the exactness of (A.lO) for polynomials of degree less than or 
equal to N and the orthogonality (with respect to integrals over n ( E ) )  we may deduce 
the exactness of (A.lO) for f ( E )  a polynomial of degree less than or equal to 2N. 
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